

telefono 361-826-1800.

DEAR WATER CUSTOMER:
Corpus Christi Water (CCW) is pleased to present our 2022 Annual Water Quality Report. This report is in accordance with the Environmental Protection Agency (EPA) National Primary Drinking Water Regulations, 40 CFR Part 141 Subpart O. This regulation requires all public water systems to provide the public with a yearly detail of our water resources and water quality.

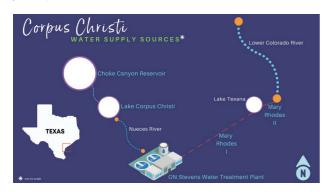
Certified and trained professionals proactively monitor and test the water throughout our distribution system. This ensures our water meets or exceeds federal and state public water system requirements.

Thousands of Texans in Corpus Christi depend on water to fill their children's baths, cook delicious food, and to be there as the ultimate resource to sustain life. We understand the trust that comes with those who depend on us when they turn on their faucets for safe and quality drinking water. We are committed to honoring this trust.

> If you have questions about the content of this report, contact at 361-826-1234

PLEASE SHARE INFORMATION

found throughout this report with all other people who use this water, especially those who may not have received this notice directly le.g., people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or by distributing copies by hand or mail.


PUBLIC PARTICIPATION

Corpus Christi's Mayor and City Council meet the second, third, and fourth Tuesday of each month. Information about public participation, public comment, and input can be found by visiting www.cctexas.com/departments/ mayor-and-city-council.

UNDERSTAND YOUR WATER SOURCES

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material. Water can pick up substances resulting from the presence of animals or from human and/or industrial activity. Contaminants that may be present in a water source before treatment include microbial, inorganic, pesticide and herbicide, radioactive, and organic chemical contaminants.

Corpus Christi's supply is 100% surface water obtained from a combination of water sources. The Atascosa River and the Nueces River supply water to Lake Corpus Christi, and the Frio River and San Miguel River supply water to Choke Canyon Reservoir. These sources flow down the Nueces River where they are then treated at the O.N. Stevens Water Treatment Plant. Water from the Lower Colorado River is transported through the Mary Rhodes Phase II Pipeline where it meets Lake Texana. Water from Lake Texana is then added and transported through the Mary Rhodes Phase I Pipeline to make the 101-mile journey to the O.N. Stevens Water Treatment Plant.

A Source Water Susceptibility Assessment of our drinking water is available on the Texas Drinking Water Watch website. To view, please visit **dww2.tceq.texas.gov/DWW/**. The report shows the susceptibility and types of constituents that may come in contact with our water supply source based on human activities and natural conditions.

IMPORTANT HEALTH INFORMATION

Cryptosporidium is a parasite that may be found in untreated surface water. Treatment facilities are required to meet removal standards during the treatment process to ensure drinking water is safe for consumption. Although filtration removes Cryptosporidium, it cannot guarantee 100 percent removal. Our previous monitoring indicated the presence of these organisms in our source water in one out of twenty-four samples. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection with symptoms such as nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the infection within a few weeks.

You may be more vulnerable than the general population to certain microbial contaminants, such as *Cryptosporidium*, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* are available from the Safe Drinking Water Hotline at 800-426-4791.

ALL DRINKING WATER MAY CONTAIN CONTAMINANTS

Treatment of water is regulated by the EPA to ensure it is safe to drink. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact Corpus Christi's Water Quality Hotline at 361-826-1234. More information about contaminants and potential health effects can also be obtained by calling the EPA's Safe Drinking Water Hotline at 800-426-4791.

HOME PLUMBING PIPES MAY IMPACT YOUR EXPOSURE TO LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Corpus Christi Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for thirty seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 800-426-4791 or www.epa.gov/safewater/lead.

DEFINITIONS OF THE DRINKING WATER QUALITY REPORT TABLE

Action Level (AL) – The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow

Level 1 Assessment – A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria were found

Level 2 Assessment – A very detailed study of the water system to identify potential problems and determine (if possible) why an *Escherichia coli* (*E. coli*) maximum contaminant level (MCL) violation has occurred and/or why total coliform bacteria were found on multiple occasions

Maximum Contaminant Level (MCL) – The highest level of a contaminant that is allowed in drinking water; MCLs are set as close to the maximum contaminant level goal as feasible using the best available treatment technology

Maximum Contaminant Level Goal (MCLG) – The level of a contaminant in drinking water below which there is no known or expected risk to health; MCLGs allow for a margin of safety

Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water; there is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants

Maximum Residual Disinfectant Level Goal (MRDLG) -

The level of a drinking water disinfectant below which there is no known or expected risk to health; MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants

Minimum Reporting Level (MRL) – The lowest value that can be reported for a constituent

Nephelometric Turbidity Units (NTU) – A measure of turbidity in water

Not Applicable (NA)

Parts Per Billion (ppb) – Equivalent to micrograms per liter ($\mu g/L$)

Parts Per Million (ppm) – Equivalent to milligrams per liter (mg/L)

Picocuries Per Liter (pCi/L) - A measure of radioactivity

Secondary Maximum Contaminant Level (SMCL) – Nonenforceable guidelines regarding contaminants that may cause aesthetic effects in drinking water but do not pose a health risk

Treatment Technique (TT) – A required process intended to reduce the level of a contaminant in drinking water

Turbidity – A measure of clarity of drinking water

2022 DRINKING WATER QUALITY REPORT

Our drinking water is regulated by the Texas Commission on Environmental Quality (TCEQ). The information that follows lists all the federally regulated or monitored contaminants which have been found in our drinking water. The data presented in this report is from the most recent testing done in accordance with the regulations.

	INORGANIC CONTAMINANTS									
Year	Constituent (Unit of Measure)	Highest Average	Highest Single Measurement	Range	MCL [AL]	MCLG	Likely Source of Contaminant			
2022	Barium (ppm)	0.095	0.095	NA	2	2	Discharge of drilling waste; discharge from metal refineries; erosion of natural deposits			
2022	Chlorite (ppm)	0.60	0.69	0.36 - 0.69	1.00	0.80	By-product of drinking water disinfection			
2022	Copper (ppm)	0.0026	0.0026	NA	[1.3]	1.3	Corrosion of household plumbing systems; erosion of natural deposits			
2022	Cyanide (ppb)	85*	180	30 – 180	200	200	Discharge from steel/metal factories; discharge from plastic and fertilizer factories			
2022	Fluoride (ppm)	0.32	0.32	NA	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories			
2022	Nitrate (ppm)	0.39	0.39	NA	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits			

*Calculated as a running annual average: the average of four consecutive quarterly averages, which typically include a portion of the previous year's results.

	DISINFECTION BY-PRODUCTS								
Year	Constituent (Unit of Measure)	Highest Yearly Average	Range	MCL	MCLG	Likely Source of Contaminant			
2022	Total Trihalomethanes (ppb)	51.3	21.5 – 45.5	80	NA	By-product of drinking water disinfection			
2022	Total Haloacetic Acids (ppb)	29.6	8.6 – 21.2	60	NA	By-product of drinking water disinfection			

The locational running annual average (LRAA), presented here as the yearly average, is the average of four consecutive quarterly results for each monitoring location. The LRAA typically includes a portion of the previous year's results. The LRAA is a health concern at levels above the MCL Some people who drink water containing total trihalomethanes (TTHMs) in excess of the MCL over many years may experience problems with their liver, kidney, or central nervous systems, and may have an increased risk of getting cancer.

	TOTAL ORGANIC CARBON									
Year	Location (Unit of Measure)	Average	Range	Removal Ratio (TT)	MCLG	Likely Source of Contaminant				
2022	Source Water (ppm)	4.9	4.13 - 5.57	NA	NA	Naturally present in the environment				
2022	Plant 1 (ppm)	3.5	2.80 - 4.28	NA	NA	Naturally present in the environment				
2022	Plant 2 (ppm)	3.5	2.80 - 4.28	NA	NA	Naturally present in the environment				
2022	Plant 1 Removal Ratio (% removal**)	1.0	0.90 - 3.04	≥1. 0	NA	Naturally present in the environment				
2022	Plant 2 Removal Ratio (% removal**)	1.0	0.84 - 1.29	≥1. 0	NA	Naturally present in the environment				

Total Organic Carbon (TOC) has no health effects. The water disinfection include trihalomethanes (THMs) and haloacetic acids (HAA5s) which are reported elsewhere in this report. **Removal ratio is the percent of TOC removed by the treatment process divided by the percent of TOC required by TCEQ to be removed.

	MAXIMUM RESIDUAL DISINFECTANT LEVEL								
Year	Constituent (Unit of Measure)	Highest Average	Range	MRDL	MRDLG	Likely Source of Contaminant			
2022	Chloramines (ppm)	3 . 37	0.85 - 4.52	4.0	4.0	Water additive used to control microbes			
	TURBIDITY								
Year	Location (Unit of Measure)	Highest Single Measurement	Lowest % of Samples Meeting Limits	Entry Point Limit (TT)	Single Measurement Limit (TT)	Likely Source of Contaminant			
2022	Plant 1 (NTU)	0.10	100.0	< 0. 3	1.0	Soil runoff			

Turbidity has no health effects; however, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.

CRYPTOSPORIDIUM MONITORING								
Year	Constituent	Average Concentration	Unit of Measurement	MCLG	Likely Source of Contaminant			
2019	Cryptosporidium	0.01	Total (0o) cysts/L	0	Human and animal fecal waste			

Cryptosporidium is of great concern in public water systems that treat surface water for drinking water sources. Resistant to disinfectants, Cryptosporidium can cause gastrointestinal illness in individuals who consume contaminated water. The Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) is required by Congress in order to increase protection from microbial contaminants such as Cryptosporidium. Under this rule, water systems must conduct monthly source water Cryptosporidium sampling over a two year span. The City of Corpus Christic completed sampling July 2019.

	PHOROBIOEOGICAL CONTAPHINANTS										
Year	Constituent	Highest Monthly % of Positive Samples	Unit of Measurement	MCL	Likely Source of Contaminant						
2022	Total Coliform Bacteria	2.44	Presence	t	Naturally present in the environment						
Total colif	form bacteria occur naturally in the environment	and are used as an indicator fo	r other, potentially harmful, bac	cteria that could also be prese	nt. †Presence of coliform bacteria in 5% or more of the monthly samples.						
Year	Constituent	Total Number of Positive Samples‡	Unit of Measurement	MCL	Likely Source of Contaminant						
2022	Fecal Coliform and <i>E. coli</i>	1	Presence	††	Human and animal fecal waste						

Fecal coliform bacteria, in particular, *E. coli*, are members of the coliform bacteria (*E. coli*) in drinking water may indicate recent contamination of the drinking water with fecal material. Microbes in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, and other symptoms. They may pose a special health risk for infants, young children, elderly, and people with severely compromised immune systems.

**A routine sample and a repeat sample are total coliform positive, and one is also fecal coliform or *E. coli* positive. **All subsequent samples were not positive for *E. coli* or total coliforms, therefore, no violation occurred. The positive sample was likely due to demolition activity in the area.

	LEAD AND COPPER MONITORING RULE									
Year	Constituent (Unit of Measure)	90th Percentil		r of Sites ding AL	AL	Likely Source of Contaminant				
2020	Lead (ppb)	2.4		0	15.0	Corrosion of household plumbing systems; erosion of natural deposits				
2020	Copper (ppm)	0.051		0	1.3	Corrosion of household plumbing systems; erosion of natural deposits				
	RADIOACTIVE CONTAMINANTS									
Year	Constituent (Unit of Measure)	Highest Single Measurement	Range	MCL	MCLG	Likely Source of Contaminant				
2020	Gross Beta Particle Activity (pCi/L)	7.0	NA	50.0	0	Decay of natural and man-made deposits				
				UI	NREGULATED CO	NTAMINANTS				
Year	Constituent (Unit of Measure)	Highest Average	Range	MCL	MCLG	Likely Source of Contaminant				
2022	Bromodichloromethane (ppb)	7.9	4.8 - 10.9	NA	NA	By-product of drinking water disinfection				
2022	Bromoform (ppb)	13.9	5.7 - 17.2	NA	NA	By-product of drinking water disinfection				
2022	Chloroform (ppb)	2.4	1.4 - 3.4	NA	NA	By-product of drinking water disinfection				
2022	Dibromochloromethane (ppb)	13.3	7.7 - 16.4	NA	NA	By-product of drinking water disinfection				
Jnregulate	ed contaminants are those for which EPA has not e	established drinking water	standards. The purpos	se of unregulated o	contaminant monitoring is to	o assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.				

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

	UNREGULATED CONTAMINANT MONITORING RULE 4 (UCMR4)									
Year	Constituent (Unit of Measure)	Average	Range	MRL	Likely Source of Contaminant					
2018	Bromochloroacetic Acid (ppb)	13.2	6.0 - 16.0	NA	By-product of drinking water disinfection					
2018	Bromodichloroacetic Acid (ppb)	2.2	1.4 - 2.9	NA	By-product of drinking water disinfection					
2018	Chlorodibromoacetic Acid (ppb)	1.2	0.3 - 1.9	NA	By-product of drinking water disinfection					
2018	Dibromoacetic Acid (ppb)	9.7	1.1 – 13.5	NA	By-product of drinking water disinfection					
2018	Dichloroacetic Acid (ppb)	12.9	5.5 – 20.7	NA	By-product of drinking water disinfection					
2018	HAA5 (ppb)	25 . 7	15.6 - 28.8	NA	By-product of drinking water disinfection					
2018	HAA6Br (ppb)	27.2	9.0 - 35.5	NA	By-product of drinking water disinfection					
2018	HAA9 (ppb)	42.4	24.7 - 49.4	NA	By-product of drinking water disinfection					
2018	Manganese (ppb)	0.7	0.0 - 1.3	0.4	Naturally occurring element					
2018	Monobromoacetic Acid (ppb)	1.0	0.0 - 1.4	NA	By-product of drinking water disinfection					
2018	Trichloroacetic Acid (ppb)	2.3	1.1 – 4.0	NA	By-product of drinking water disinfection					

2018	Trichloroacetic Acid (ppb)	2.3	1.1 – 4.0	NA	By-product of drinking water disinfection					
	SECONDARY AND OTHER CONSTITUENTS – NOT ASSOCIATED WITH ADVERSE HEALTH EFFECTS									
Year	Constituent (Unit of Measure)	Average	Range	SMCL	Likely Source of Contaminant					
2022	Aluminum (ppm)	0.124	NA	0.2	Abundant naturally occurring element					
2022	Bicarbonate (ppm)	132	NA	NA	Corrosion of carbonate rocks such as limestone					
2022	Calcium (ppm)	50.5	NA	NA	Abundant naturally occurring element					
2022	Chloride (ppm)	128	NA	300	Abundant naturally occurring element; used in water purification					
2022	Hardness as CaCO₃ (ppm)	163	NA	NA	Naturally occurring calcium and magnesium					
2022	Magnesium (ppm)	9.0	NA	NA	Abundant naturally occurring element					
2022	Manganese (ppb)	2.10	NA	50	Naturally occurring element					
2022	Nickel (ppm)	0.0020	NA	NA	Erosion of natural deposits					
2022	Potassium (ppm)	7.22	NA	NA	Abundant naturally occurring element					
2022	Sodium (ppm)	89	NA	NA	Erosion of natural deposits; oil field by-product					
2022	Sulfate (ppm)	78	NA	300	Naturally occurring; oil field by-product					
2022	Total Alkalinity (ppm)	108	NA	NA	Naturally occurring soluble mineral salts					
2022	Total Dissolved Solids (ppm)	472	NA	1,000	Total dissolved mineral constituents in water					

Many constituents found in drinking water can cause taste, color, and odor problems. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document, but they may affect the appearance and taste of your water.

ABOUT CORPUS CHRISTI WATER

Corpus Christi Water is the Coastal Bend's primary regional water supplier. With surface water supplies from three river basins, CCW produces an average of 80 million gallons of water per day for the seven-county service area. CCW has led the charge of planning water security for over 130 years. As the Coastal Bend's water needs grow, so doesthe need for conservation initiatives, expanded treatment facilities, and a more reliable, drought-resistant water resource.

WATER LOSS

361-826-1234

In the water audit report submitted to the Texas Water Development Board for the time period of October 1, 2021 to September 30, 2022, we produced 30,545,239,000 gallons of treated water. We reported an estimated water loss of 1,727,027,086 gallons or 6.87%. This refers to the amount of water lost due to leaks, water line breaks, or other non-revenue water use.

UTILITY BILLING OFFICE

If you have questions relating to water charges on your utility bill, specialists are available to help **Monday through Friday, 8 a.m. to 5 p.m.** Find answers by calling **311**, or by emailing **UBO@cctexas.com**.

CONNECT WITH US

www.cctexas.com/uepartments/water-uepartment

cctxwater@cctexas.com
CCTVCorpusChristi

@cctxwater

facebook.com/cctxwater

Corpus Christi Water

2726 Holly Road, Corpus Christi, TX 78415 361-826-1800 • cctxwater@cctexas.com

